

IMMINGHAM EASTERN RO-RO TERMINAL

Environmental Statement: Volume 2 Figures: Chapter 7: Physical Processes Document Reference: 8.3.7

APFP Regulations 2009 – Regulation 5(2)(a) and 5(2)(e) PINS Reference – TR030007

February 2023

Figures	Coversheet	
8.3.7(a)	Figure 7.1	Regional setting within Humber Estuary
8.3.7(b)	Figure 7.2	Current and wave roses at the proposed site
8.3.7(c)	Figure 7.3	Benthic sampling locations
8.3.7(d)	Figure 7.4	Particle size distribution of bed samples
8.3.7(e)	Figure 7.5	Maximum excess SSC from peak flood (top) and peak ebb (bottom) at HU060
8.3.7(f)	Figure 7.6	Maximum SSC and sedimentation from dredge and disposal across full modelled period
8.3.7(g)	Figure 7.7	Timeseries of excess SSC (top) and SED (bottom) at locations down (left) and up-estuary (right)
8.3.7(h)	Figure 7.8	Peak flood baseline flows (top) and impact of scheme (bottom)
8.3.7(i)	Figure 7.9	Peak ebb baseline flows (top) and impact of scheme (bottom)
8.3.7(j)	Figure 7.10	Timeseries of changes to flows and bed shear stress for sites DP1 (left) and DP2 (right)
8.3.7(k)	Figure 7.11	Timeseries of changes to flows and bed shear stress for sites DP3 (left) and DP4 (right)
8.3.7(I)	Figure 7.12	Timeseries of changes to flows and bed shear stress for sites P1 (left) and P2 (right)
8.3.7(m)	Figure 7.13	Timeseries of changes to flows and bed shear stress for sites P3 (left) and P4 (right)
8.3.7(n)	Figure 7.14	Timeseries of changes to flows and bed shear stress for sites P5 (left) and P6 (right)
8.3.7(o)	Figure 7.15	Timeseries of changes to flows and bed shear stress for sites P7 (left) and IOT (right)
8.3.7(p)	Figure 7.16	Timeseries of changes to flows and bed shear stress for sites HST (left) and Able (right)
8.3.7(q)	Figure 7.17	Baseline peak flood flow speed (top), change due to scheme (left) and due to vessels on berth (right)
8.3.7(r)	Figure 7.18	Baseline ebb flood flow speed (top), change due to scheme (left) and due to vessels on berth (right)

8.3.7(s)	Figure 7.19	Modelled bed level change over a mean spring neap cycle
8.3.7(t)	Figure 7.20	Predicted change to BSS on flood (top) and ebb (bottom)
8.3.7(u)	Figure 7.21	Predicted baseline sedimentation over mean spring neap cycle
8.3.7(v)	Figure 7.22	Baseline Hs (top) and effect of scheme (bottom) for 0.5-yr wave event from NE (left) and E (right)
8.3.7(w)	Figure 7.23	Baseline Hs (top) and effect of scheme (bottom) for 0.5-yr wave event from SE (left) and 50-yr wave from NE (right)
8.3.7(x)	Figure 7.24	Baseline Hs (top) and effect of scheme (bottom) for 50-yr wave event from E (left) and from SE (right)

Date	Ву	QA		
09/12/2022	AMF	OJR		
Projection	NA			
Scale (A3)	NA			
Project no. 5035		35	14	
Fig7.17_ES_A3.mxd				

IMMINGHAM EASTERN RO-RO TERMINAL BASELINE PEAK FLOOD FLOW SPEED (TOP), CHANGE DUE TO SCHEME (LEFT) AND DUE TO VESSELS ON-BERTH (RIGHT)

Date	Ву	QA			
09/12/2022	AMF	OJR	1.FL		
Projection	Projection NA				
Scale (A3)	N	IA	Entry the		
Project no.	50	35	223		
Fig7.18_ES_A3.mxd					
IMMINGHAM EASTERN					

RO-RO TERMINAL BASELINE PEAK EBB FLOW SPEED (TOP), CHANGE DUE TO SCHEME (LEFT) AND DUE TO VESSELS ON-BERTH (RIGHT)

			>+0.16	
			+0.14	
			+0.12	
			+0.10	
			+0.08	
		_	+0.06	
		_	+0.04	
	-		+0.02	ce (m)
		-	+0.00	fferen
			-0.02	Hs Dit
		_	-0.04	
		_	-0.06	
		_	-0.08	
			-0.10	
			-0.12	
			-0.14	
1			<-0.16	

Date	Ву	QA				
09/12/2022	AMF	OJR				
Projection	NA					
Scale (A3)	NA					
Project no.	50	35				
Fig7.22_ES_A3.mxd						

IMMINGHAM EASTERN RO-RO TERMINAL BASELINE HS (TOP) AND EFFECT OF SCHEME (BOTTOM) FOR 0.5-YR WAVE EVENT FROM NE (LEFT) AND E (RIGHT)

 	-		>+0.16	
			+0.14	
	_	_	+0.12	
		_	+0.10	
		_	+0.08	
		-	+0.06	
		_	+0.04	
	_	_	+0.02	(m) ec
		-	+0.00	ferenc
	_	-	-0.02	Hs Dif
		_	-0.04	
		_	-0.06	
		_	-0.08	
			-0.10	
	_		-0.12	
			-0.14	
 	L		<-0.16	

Date	Ву	QA		
09/12/2022	AMF	OJR		
Projection	NA			
Scale (A3)	NA			
Project no. 5035				
Fig7.23_ES_A3.mxd				

IMMINGHAM EASTERN RO-RO TERMINAL BASELINE HS (TOP) AND EFFECT OF SCHEME (BOTTOM) FOR 0.5-YR WAVE FROM SE (LEFT) AND 50-YR WAVE FROM NE (RIGHT)

 	╞		>+0.16	
		-	+0.14	
			+0.12	
		_	+0.10	
			+0.08	
		_	+0.06	
		_	+0.04	
	F	_	+0.02	ie (m)
		-	+0.00	erenc
	L	_	-0.02	Hs Dif
		_	-0.04	
		_	-0.06	
		_	-0.08	
		_	-0.10	
	-	_	-0.12	
			-0.14	
	+		<-0.16	

Date	Ву	QA				
09/12/2022	AMF	OJR				
Projection	NA					
Scale (A3)	NA					
Project no. 5035						
Fig7.24_ES_A3.mxd						

IMMINGHAM EASTERN RO-RO TERMINAL BASELINE HS (TOP) AND EFFECT OF SCHEME (BOTTOM) FOR 50-YR WAVE EVENT FROM E (LEFT) AND FROM SE (RIGHT)